Hi Michael,
Thanks for uploading them! Glad we've got it working
Your system is a sort of dibutoxyindole-based porphyrin crystal. I'm presuming that this is the relaxed (or experimental) structure? If you could upload your OUTCAR file, this might add clarity for a few points. The first is, since it is an organic crystal, I presume that it is an insulator, rather than a conductor?
A few minor points to consider, which are essentially optional:
If it is an insulator, then you can change the smearing from (ISMEAR = 2, SIMGA = 0.2) to (ISMEAR = 0, SIGMA = 0.05), i.e. 2nd order Methfessel-Paxton to Gaussian. This is a fairly minor point though.
A second, is that you are using IBRION = 6 but have switched symmetry off except for sampling of the Brillouin zone (
ISYM = 1). You could try turning symmetry on as your system looks pretty symmetric.
It might also be worth adding in a disperison correction (e.g. D2, D3, cf.
IVDW), as for an organic crystal this tends to be quite important.
Then a few bigger ones that might make quite a large difference to your results:
Your POTIM is quite large (0.8 ), I would change this to be 0.015, although the software may do this automatically already.
A big one is that you have set your convergence criteria for the forces to be extremely tight (
EDIFFG = -1E-5 eV/A) - the minus indicates forces, rather than energy difference is the criterion. I would loosen this significantly to (EDIFFG = -0.01).
In terms of time-saving, there are a few suggestions that I have:
Firstly, you could reduce the k-point mesh from 2x2x2 to just the gamma point. This would offer a significant time-saving, although you would have to test how it changes the phonons/DOS.
Secondly, you could change PREC from Accurate to Normal. This should give a big time-saving.
Finally, I noticed that your structure contains 2 porphyrin rings. It might be possible to find a symmetrically equivalent structure with only one in. That would save a lot of time. However, this depends a lot on your system.
Does this answer your question?
Best wishes,
Chris